
Cloud Optimized Point Cloud Specification – 1.0

©2021, Hobu, Inc. All rights reserved.

Figure 1: COPC Logo

Table of contents

1. Version
2. Introduction
3. Notation
4. Implementation

1. LAS PDRF 6, 7, or 8
2. info VLR
3. hierarchy VLR

5. Differences from EPT
6. Example Data
7. Reader Implementation Notes
8. Credits
9. Pronunciation

10. Discussion
11. Structural Changes to Draft Specification
12. COPC Software Implementations

Version

This document defines Cloud Optimized Point Cloud (COPC) version 1.0.

This document is available as a PDF at copc-specification-1.0.pdf.

1

https://hobu.co
software.md
copc-specification-1.0.pdf


Introduction

A COPC file is a LAZ 1.4 file that stores point data organized in a clustered
octree. It contains a VLR that describe the octree organization of data that are
stored in LAZ 1.4 chunks.

Figure 2: info VLR and the LAZ chunk table allow COPC readers to select
and seek through the file.

Data organization of COPC is modeled after the EPT data format, but COPC
clusters the storage of the octree as variably-chunked LAZ data in a single
file. This allows the data to be consumed sequentially by any reader than can
handle variably-chunked LAZ 1.4 (LASzip, for example), or as a spatial subset
for readers that interpret the COPC hierarchy. More information about the
differences between EPT data and COPC can be found below.

Notation

Some of the file format is described using C-language fixed width integer types.
Groups of entities are denoted with a C-language struct, though all data is
packed on byte boundaries and encoded as little-endian values, which may not
be the case for a C program that uses the same notation.

Implementation

Key aspects distinguish an organized COPC LAZ file from an LAZ 1.4 that is
unorganized:

• It MUST contain ONLY LAS PDRFs 6, 7, or 8 formatted data
• It MUST contain a COPC info VLR
• It MUST contain a COPC hierarchy VLR

LAS PDRFs 6, 7, or 8

COPC files MUST contain data with ONLY ASPRS LAS Point Data Record
Format 6, 7, or 8. See the ASPRS LAS specification for details.

2

https://entwine.io/entwine-point-tile.html
https://en.cppreference.com/w/c/types/integer
https://github.com/ASPRSorg/LAS


info VLR

User ID Record ID
copc 1

The info VLR MUST exist.

The info VLR MUST be the first VLR in the file (must begin at offset 375
from the beginning of the file).

The info VLR is 160 bytes described by the following structure. reserved
elements MUST be set to 0.

struct CopcInfo
{

// Actual (unscaled) X coordinate of center of octree
double center_x;

// Actual (unscaled) Y coordinate of center of octree
double center_y;

// Actual (unscaled) Z coordinate of center of octree
double center_z;

// Perpendicular distance from the center to any side of the root node.
double halfsize;

// Space between points at the root node.
// This value is halved at each octree level
double spacing;

// File offset to the first hierarchy page
uint64_t root_hier_offset;

// Size of the first hierarchy page in bytes
uint64_t root_hier_size;

// Minimum of GPSTime
double gpstime_minimum;

// Maximum of GPSTime
double gpstime_maximum;

// Must be 0

3



uint64_t reserved[11];
};

hierarchy VLR

User ID Record ID
copc 1000

The hierarchy VLR MUST exist.

Like EPT, COPC stores hierarchy information to allow a reader to locate points
that are in a particular octree node. Also like EPT, the hierarchy MAY be
arranged in a tree of pages, but SHALL always consist of at least ONE hierarchy
page.

The VLR data consists of one or more hierarchy pages. Each hierarchy data
page is written as follows:

The VoxelKey corresponds to the naming of EPT data files.

struct VoxelKey
{

// A value < 0 indicates an invalid VoxelKey
int32_t level;
int32_t x;
int32_t y;
int32_t z;

}

An entry corresponds to a single key/value pair in an EPT hierarchy, but con-
tains additional information to allow direct access and decoding of the corre-
sponding point data.

struct Entry
{

// EPT key of the data to which this entry corresponds
VoxelKey key;

// Absolute offset to the data chunk if the pointCount > 0.
// Absolute offset to a child hierarchy page if the pointCount is -1.
// 0 if the pointCount is 0.
uint64_t offset;

// Size of the data chunk in bytes (compressed size) if the pointCount > 0.
// Size of the hierarchy page if the pointCount is -1.
// 0 if the pointCount is 0.

4

https://entwine.io/entwine-point-tile.html#ept-data
https://entwine.io/entwine-point-tile.html#ept-data


int32_t byteSize;

// If > 0, represents the number of points in the data chunk.
// If -1, indicates the information for this octree node is found in another hierarchy page.
// If 0, no point data exists for this key, though may exist for child entries.
int32_t pointCount;

}

The entries of a hierarchy page are consecutive. The number of entries in a page
can be determined by taking the size of the page (contained in the parent page as
Entry::byteSize or in the COPC info VLR as CopcData::root_hier_size)
and dividing by the size of an Entry (32 bytes).

struct Page
{

Entry entries[page_size / 32];
}

Differences from EPT

• COPC has no ept.json. The information from ept.json is stored in the
LAS file header and LAS VLRs.

• COPC currently provides no support for ept-sources.json. File metadata
support may be added in the future.

• COPC only supports the LAZ point format and does not support binary
point arrangements.

• COPC chunks store only point data as LAZ. EPT, when stored as LAZ,
uses complete LAZ files including the LAS header and perhaps VLRs.

Example Data

• The venerable Autzen Stadium file commonly used in PDAL and other
open source testing scenarios is available as a 80mb COPC file at https://
github.com/PDAL/data/blob/master/autzen/autzen-classified.copc.laz

View it in your browser at https://viewer.copc.io/?copc=https://s3.amazonaws.
com/hobu-lidar/autzen-classified.copc.laz

• SoFi Stadium is available as a 2.3gb COPC file at https://hobu-lidar.s3.
amazonaws.com/sofi.copc.laz.

View it in your browser at https://viewer.copc.io/?copc=https://s3.amazonaws.
com/hobu-lidar/sofi.copc.laz

5

https://entwine.io/entwine-point-tile.html#ept-data
https://entwine.io/entwine-point-tile.html#ept-sources
https://github.com/PDAL/data/tree/master/autzen
https://github.com/PDAL/data/blob/master/autzen/autzen-classified.copc.laz
https://github.com/PDAL/data/blob/master/autzen/autzen-classified.copc.laz
https://viewer.copc.io/?copc=https://s3.amazonaws.com/hobu-lidar/autzen-classified.copc.laz
https://viewer.copc.io/?copc=https://s3.amazonaws.com/hobu-lidar/autzen-classified.copc.laz
https://hobu-lidar.s3.amazonaws.com/sofi.copc.laz
https://hobu-lidar.s3.amazonaws.com/sofi.copc.laz
https://viewer.copc.io/?copc=https://s3.amazonaws.com/hobu-lidar/sofi.copc.laz
https://viewer.copc.io/?copc=https://s3.amazonaws.com/hobu-lidar/sofi.copc.laz


The data are courtesy of US Army Corps of Engineers Remote Sensing & GIS
Center of Expertise / National Center for Airborne Laser Mapping

• Millsite is available as a 1.9gb COPC file at https://s3.amazonaws.com/
data.entwine.io/millsite.copc.laz.

View it in your browser at https://viewer.copc.io/?copc=https://s3.amazonaws.
com/data.entwine.io/millsite.copc.laz

The data are from the USGS 3DEP Millsite Reservoir Collection

Reader Implementation Notes

COPC is designed so that a reader needs to know little about the structure of a
LAZ file. By reading the first 549 bytes (375 for the header + 54 for the COPC
VLR header + 160 for the COPC VLR), the software can verify that the file is
a COPC file and determine the point data record format and point data record
length, both of which are necessary to create a LAZ decompressor.

Readers should: * verify that the first four bytes of the file contain the ASCII
characters “LASF”. * verify that the 4 bytes starting at offset 377 contain the
characters copc. * verify that the bytes at offsets 393 and 394 contain the values
1 and 0, respectively (this is the COPC version number, 1). * determine the
point data record format by reading the byte at offset 104, masking off the two
high bits, which are used by LAZ to indicate compression, and can be ignored.
* determine the point data record length by reading two bytes at offset 105.

The octree hierarchy is arranged in pages. The COPC VLR provides information
describing the location and size of root hierarchy page. The root hierarchy page
can be used to traverse to child pages. Each entry in a hierarchy page either
refers to a child hierarchy page, octree node data chunk, or an empty octree
node. The size and file offset of each data chunk is provided in the hierarchy
entries, allowing the chunks to be directly read for decoding.

Credits

COPC was designed in July–November 2021 by Andrew Bell, Howard Butler,
and Connor Manning of Hobu, Inc.. Entwine and Entwine Point Tile were also
designed and developed by Connor Manning of Hobu, Inc

6

https://www.erdc.usace.army.mil/Locations/CRREL/
https://www.erdc.usace.army.mil/Locations/CRREL/
http://ncalm.cive.uh.edu/
https://s3.amazonaws.com/data.entwine.io/millsite.copc.laz
https://s3.amazonaws.com/data.entwine.io/millsite.copc.laz
https://viewer.copc.io/?copc=https://s3.amazonaws.com/data.entwine.io/millsite.copc.laz
https://viewer.copc.io/?copc=https://s3.amazonaws.com/data.entwine.io/millsite.copc.laz
https://usgs.entwine.io/data/view.html?r=%22https://s3-us-west-2.amazonaws.com/usgs-lidar-public/USGS_LPC_UT_MillsiteReservoir_2017_LAS_2018%22
https://hobu.co
https://entwine.io
https://entwine.io/entwine-point-tile.html
https://hobu.co
https://hobu.co


Support

COPC development was supported by

Pronunciation

There is no official pronunciation of COPC. Here are some possibilities:

• cah-pick – ka pIk
• co-pick – kö pIk
• cop-see – kap si
• cop-pick – kap pIk
• see oh pee see – si o pi si

7

https://www.erdc.usace.army.mil/locations/crrel/
https://planetarycomputer.microsoft.com/


Discussion

Use Case

Cloud Optimized GeoTIFF has shown the utility and convenience of taking a
dominant container format for geospatial raster data and optionally augmenting
its organization to allow incremental “range-read” support over HTTP with it.
With the mantra of “It’s just a TIFF” allowing ubiquitous usage of the data
content combined with the flexibility of supporting partial reads over the inter-
net, COG has found a sweet spot. Its reward is the ongoing rapid conversion of
significant raster data holdings to COG-organized content to enable convenient
cloud consumption of the data throughout the GIS industry.

What is the COG for point clouds? It would need to be similar in fit and scope
to COG:

• Support incremental partial reads over HTTP
• Provide good compression
• Allow dimension-selective reads
• Provide all metadata and supporting information
• Support an EPT-style octree organization for data streaming

“Just a LAZ”

LAZ (LASZip) is the ubiquitous geospatial point cloud format. It is an augmen-
tation of ASPRS LAS that utilizes an arithmetic encoder to efficiently compress
the point content. It has seen a number of revisions, but the latest supports
dimension-selective access and provides all of the metadata support that normal
LAS provides. Importantly, multiple software implementations (laz-rs, laz-perf,
and LASzip) provide LAZ compression and decompression, and laz-perf and
laz-rs include compilation to JavaScript which is used by all JavaScript clients
when consuming LAZ content.

Put EPT in LAZ

The EPT content organization supports LAZ in its current “exploded” organi-
zation. Exploded in this context means that each chunk of data at each octree
level is stored as an individual LAZ file (or simple blob, or a zstd-compressed
blob). One consequence of the exploded organization is large EPT trees of data
can mean collections of millions of files. In non-cloud situations, EPT’s cost
when moving data or deleting it can be significant. Like the tilesets of late
2000s raster map tiles, lots of little files are a problem.

LAZ provides a feature that allows concatenation of the individual LAZ files
into a single LAZ file. This is the concept of a dynamically-sized chunk table. It

8

https://www.cogeo.org/
https://entwine.io/entwine-point-tile.html
https://github.com/ASPRSorg/LAS
https://github.com/laz-rs/laz-rs
https://github.com/hobu/laz-perf
https://github.com/laszip/laszip


is a feature that Martin Isenburg envisioned for quad-tree organized data, but
it could work the same for an octree.

Structural Changes to Draft Specification

• Removed count from Page struct
• Changed Record ID of COPC hierarchy EVLR from 1234 to 1000
• Require reserved entries of the COPC VLR to have the value 0
• Require the COPC VLR to be located immediately after the header at

offset 375.
• Increase the size of the COPC VLR data structure to 160 bytes.
• Add laz_vlr_offset, laz_vlr_size, wkt_vlr_offset, wkt_vlr_size,

eb_vlr_offset, eb_vlr_size to the COPC VLR, replacing 6 reserved
entries.

• PDRF must be 6, 7, or 8
• Add extents VLR with UserID of copc and record ID of 10000.
• VLR UserIDs switched from entwine to copc
• Removed laz_vlr_offset, laz_vlr_size, wkt_vlr_offset, wkt_vlr_size,eb_vlr_offset,eb_vlr_size,root_hier_offset,root_hier_sizefrom

the COPC info VLR. Added 8reserved‘ entries.
• Describe hierarchy entries for empty octree nodes.
• Add back root_hier_offset and root_hier_size in COPC info VLR.

Removed 2 reserved entries.
• Remove extents VLR and put gpstime_minimum and gpstime_maximum

in info VLR.

9

https://twitter.com/rapidlasso

	Cloud Optimized Point Cloud Specification – 1.0
	Table of contents
	Version
	Introduction
	Notation
	Implementation
	LAS PDRFs 6, 7, or 8
	info VLR
	hierarchy VLR

	Differences from EPT
	Example Data
	Reader Implementation Notes
	Credits
	Support

	Pronunciation
	Discussion
	Use Case
	Just a LAZ
	Put EPT in LAZ

	Structural Changes to Draft Specification

